Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract This study investigates the biogeochemical drivers of aragonite saturation state (ΩAr) in Baffin Bay, with a focus on the relatively undersampled west Greenland shelf. Our findings reveal two main depth‐dependant processes controlling the spatial distribution of ΩArin Baffin Bay; within the upper 200 m, lower ΩArcoincides with increasing fractions of Arctic‐outflow waters, while below 200 m organic matter respiration decreases ΩAr. A temporal analysis comparing historical measurements from 1997 and 2004 with our 2019 data set reveals a significant decrease in the ΩArof Arctic‐outflow waters, coinciding with reduced total alkalinity (TA). However, no discernible anthropogenic ocean acidification signal is identified. Significant Arctic water fractions (20%–40%) are found to be present on the west Greenland shelf, associated with reduced TA and ΩAr. A numerical modeling simulation incorporating a passive tracer demonstrates that periodic changes in wind direction lead to a switch from onshore to offshore Ekman transport along the Baffin Island current, transporting Arctic waters toward the west Greenland shelf. This challenges the conventional understanding of Baffin Bay's circulation and underscores the need for further research on the region's physical oceanography. Based on salinity‐TA relationships, surface waters on the west Greenland shelf have a significantly lower meteoric TA end‐member compared to waters of the Baffin Island Current in western Baffin Bay. The low eastern TA freshwater end‐member agrees well with recent glacial meltwater TA measurements, suggesting that glacial meltwater is the main freshwater source to surface waters on the west Greenland shelf.more » « less
- 
            Polar oceans and sea ice cover 15% of the Earth’s ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean–Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the context of climate change. However, our ability to monitor the pace and magnitude of changes in the polar regions and evaluate their impacts for the rest of the globe is limited by both remoteness and sea-ice coverage. Sea ice not only supports biological activity and mediates gas and aerosol exchange but can also hinder some in-situ and remote sensing observations. While satellite remote sensing provides the baseline climate record for sea-ice properties and extent, these techniques cannot provide key variables within and below sea ice. Recent robotics, modeling, and in-situ measurement advances have opened new possibilities for understanding the ocean–sea ice–atmosphere system, but critical knowledge gaps remain. Seasonal and long-term observations are clearly lacking across all variables and phases. Observational and modeling efforts across the sea-ice, ocean, and atmospheric domains must be better linked to achieve a system-level understanding of polar ocean and sea-ice environments. As polar oceans are warming and sea ice is becoming thinner and more ephemeral than before, dramatic changes over a suite of physicochemical and biogeochemical processes are expected, if not already underway. These changes in sea-ice and ocean conditions will affect atmospheric processes by modifying the production of aerosols, aerosol precursors, reactive halogens and oxidants, and the exchange of greenhouse gases. Quantifying which processes will be enhanced or reduced by climate change calls for tailored monitoring programs for high-latitude ocean environments. Open questions in this coupled system will be best resolved by leveraging ongoing international and multidisciplinary programs, such as efforts led by SOLAS, to link research across the ocean–sea ice–atmosphere interface.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
